
1

Cours/TD n°1 : les variables

Les variables : affectation, saisie et affichage.

Qu’est ce qu’une variable ?

Pour qu’un programme ne donne pas toujours le même résultat, un programme a constamment

besoin de stocker des valeurs. Ces valeurs peuvent être récupérées grâce au clavier, grâce à des

fichiers, grâce au réseau… Bref, quel que soit l’origine de la valeur, le programme a besoin de les

stocker pour pouvoir les utiliser. Le mot variable est donc utilisé pour représenter tout ce que

l’utilisateur va « donner » à l’ordinateur comme informations. Pour employer une métaphore, on

peut dire que déclarer une variable dans un programme revient à réserver une boite en mémoire.

Par exemple, dans l’énoncé suivant :

Écrire l’algorithme décrivant un programme qui dema nde à l’utilisateur de
saisir deux valeurs entières et affiche le résultat de leur somme.

On remarque que le programme va avoir besoin de deux valeurs que l’utilisateur donnera. Ces deux

valeurs, que le programme devra stocker, vont donner naissance à deux variables.

Par ailleurs, il existe d’autres utilisations des variables. Pour reprendre l’exemple précédant,

supposons que nous ayons besoin de cette somme pour d’autres traitements (par exemple, tester si

la somme est supérieure à 10 puis de diviser cette somme par deux). Nous aurons alors la possibilité

d’utiliser une variable pour stocker le résultat temporaire.

Pour conclure, nous aurons deux utilisations des variables :

• Une variable par information que l’utilisateur donnera à l’ordinateur

• Une variable pour chaque résultat temporaire.

Mise en pratique :

Identifier le nombre de variables qui seront nécessaires à la conception des programmes suivants

• Écrire un programme qui demande à l’utilisateur de saisir son année
de naissance, son mois de naissance puis qui affich e son signe
astrologique.

• Écrire un programme qui demande à l’utilisateur de saisir son nom,
son prénom et son âge et qui affiche s’il est majeu r.

• Écrire un programme qui calcule la moyenne de 10 no tes que
l’utilisateur donnera, et qui affiche « bravo » si la moyenne est
supérieure à 15, « bien » si la moyenne est entre 1 0 et 15 et
« attention » si la moyenne est inferieur à 10.

• Écrire un programme qui demande à l’utilisateur de saisir les trois
cotés d’un triangle et qui affiche si le triangle e st rectangle.

• Écrire l’algorithme affichant le minimum d’une suit e de 10 réels
saisis au clavier.

2

Utilisation des variables en algorithmique.

En algorithmique, la syntaxe est stricte (même si c’est moins stricte qu’en c++). Nous devons donc

déclarer les variables en début de programme, avant le mot clé « DEBUT ». Cela aura pour

conséquence de réserver des boites (vides) en mémoire. En reprenant l’exemple précédent, nous

écrirons donc :

PROGRAMME Somme
VAR val1,val2 : entier
DEBUT

Ainsi, nous avons créé deux boites : l’une s’appelle val1 , l’autre val2 . A ce propos, le nom des

variables est très important et obéit à des règles strictes. La première règle interdit l’utilisation de

signe de ponctuation dans le nom (pas de virgules, pas d’espaces, pas d’apostrophe…). La seconde

règle est qu’un nom de variable ne doit pas commencer par un nombre. Mis à par ces deux règles,

nous sommes libre d’utiliser ce que l’on veut, mais il est souhaitable d’utiliser un nom

compréhensible.

Par ailleurs, nous avons contraint le contenu des boites avec le mot « entier » : c’est le type de la

boite. Avec cette contrainte, on oblige à ce que tout ce qui rentrera dans la boite sera un chiffre

entier (1, 50, 1953, -21, 33,…). Il est obligatoire de préciser dès le départ ce que la boite

contiendra. Cela permet à l’ordinateur de prévoir la taille de la boite : un entier aura besoin d’une

petite boite, tandis qu’une chaine de caractères aura besoin d’une grande boite. Il y a 5 types à

connaitre :

• Entier : La boite ne contiendra que des chiffres entiers (1, 5, -9000, 1256, 98, -45)

• Réel : La boite ne contiendra que des chiffres entiers (1.5, 5.0, -90.125, 1.256, 9.8, -45.0)

• Caractère : La boite ne contiendra que des caractères (‘a’, ’b’, ’ ‘, ’7’, ’/’, ’^’, ‘R’, ‘.’)

• Chaine : La boite contiendra une suite de caractères (« bonjour », « Ha! Un vrai cours ! »)

• Booléen : La boite ne contiendra que VRAI ou FAUX (ou 1 et 0…) L’important à

comprendre, c’est que ce type est très économique en place mémoire.

Attention !

Ne pas faire la confusion entre une variable Chaine contenant des nombres (par exemple « 185 »)

et une variable Entier ! Sur une variable de type Chaine , il n’est pas possible de faire des calculs,

il faut alors considérer le nombre comme un mot composé des caractères ‘1’, ‘8’, et ‘5’. Pour éviter

de confondre un nombre d’une chaine, il faut TOUJOURS noter une chaine entre guillemets !

Mise en pratique

Reprendre les exemples de la page précédente et donner le nom et le type de chaque variable.

3

Manipuler les variables

Nous avons donc vu jusqu’ici comment faire pour réserver en mémoire une boite : déclarer le nom

de la boite, et déclarer la taille de la boite (le type). Cependant, il manque encore une opération

importante : mettre du contenu dans la boite… En effet, une boite vide ne sert à rien !

L’affectation

En algorithmique, on représente l’opération qui consiste à mettre une valeur dans une boite par une

flèche : <- . Ainsi, l’opération suivante titi <- 3 revient à mettre 3 dans la boite qui s’appelle

titi . Ceci, soit dit en passant, sous-entend impérativement que titi soit une variable de type

Entier . Si titi a été défini dans un autre type, il faut bien comprendre que cette instruction

provoquera une erreur. C’est un peu comme si, en donnant un ordre à quelqu’un, on accolait un

verbe et un complément incompatibles, du genre « Epluchez la casserole ». Même dotée de la

meilleure volonté du monde, la ménagère lisant cette phrase ne pourrait qu’interrompre

dubitativement sa tâche. Alors, un ordinateur, vous pensez bien…

Il est possible d’affecter d’autres valeurs à la boite titi , mais dans ce cas, la valeur sera à chaque

fois remplacée par la nouvelle valeur. Il n’est possible de stocker qu’une seule valeur par case (sauf

pour les tableaux que nous verrons plus tard). Par ailleurs, il y a de nombreuses manières de mettre

une valeur dans une variable. Par exemple :

titi <- 4 + toto

signifie que la boite titi récupère le résultat de la somme de 4 avec la valeur de la boite toto .

Important : une instruction d’affectation ne modifie pas ce qui est situé à droite de la flèche ! Il est

aussi possible d’utiliser la même variable à droite et à gauche de la flèche. Cela permet notamment

d’incrémenter la valeur :

titi <- titi + 1

Si titi valait 4 avant l’instruction, titi vaut 5 après.

Par ailleurs, il faut faire attention au nom de la variable (l’étiquette sur la boite) et la valeur (le

contenu de la boite). Voilà un exemple de confusion fréquent :

La différence entre les deux exemples ne concerne que des guillemets. Mais le résultat du premier

exemple n’a rien à voir avec le résultat du second exemple. En effet, dans le premier exemple, la

variable Fifi contient la suite de caractères Riri , tandis que dans le second exemple, la variable

Fifi contient la suite de caractères Loulou !

Exemple 1 :

Début

Riri ← "Loulou"

Fifi ← "Riri"

Fin

Exemple 2 :

Début

Riri ← "Loulou"

Fifi ← Riri

Fin

4

Mise en pratique

• Donner les valeurs des différentes variables à la fin des algorithmes (sauf si l’algorithme est

faux).

Pour des raisons de place, je ne mets pas l’entête du programme, mais il est sous-entendu…

Plus difficile :

• Ecrire un algorithme permettant d’échanger les valeurs de deux variables A et B de type

entier, et ce quel que soit leur contenu préalable (on prendra A<-5 et B<-2)

• Une variante du précédent : on dispose de trois variables de type réel : A, B et C. Ecrivez un

algorithme transférant à B la valeur de A, à C la valeur de B et à A la valeur de C (on prendra

A<-5.6 , B<-2.1 et C<-15.43).

Var A, B : Entier
Début
A ← 1
B ← A + 3
A ← 3
Fin

Var A, B, C : Entier
Début
A ← 5
B ← 3
C ← A + B
A ← 2
C ← B – A
Fin

Var A, B : Entier
Début
A ← 5
B ← A + 4
A ← A + 1
B ← A – 4
Fin

Var A, B, C : Entier
Début
 A ← 3
B ← 10
C ← A + B
B ← A + B
A ← C
Fin

Var A, B : Entier
Début
A ← 5
B ← 2
A ← B
B ← A
Fin

1 2 3

4

5

Var A, B, C en Caractères
Début
A ← "423"
B ← "12"
C ← A + B
Fin

6

Var A, B, C en Caractères
Début
A ← "423"
B ← "12"
C ← A & B
Fin

7

5

La saisie au clavier et l’affichage.

Affecter des valeurs à des variables, c’est bien… Mais pour l’instant, on peut se demander à quoi ça

peut servir. En effet. Imaginons que nous ayons fait un programme pour calculer le carré d’un

nombre, mettons 12. Si on a fait au plus simple, on a écrit un truc du genre :

Programme carre
VAR A : entier
DEBUT
A <- 12 * 12
FIN

D’une part, ce programme nous donne le carré de 12. C’est très gentil à lui. Mais si l’on veut le carré

d’un autre nombre que 12, il faut réécrire le programme. Bof.

D’autre part, le résultat est indubitablement calculé par la machine. Mais elle le garde

soigneusement pour elle, et le pauvre utilisateur qui fait exécuter ce programme, lui, ne saura jamais

quel est le carré de 12. Re-bof.

Pour pallier à ces problèmes, nous avons à notre disposition deux instructions : Saisir et

Afficher. Saisir permet d’envoyer les valeurs entrées au clavier dans une variable, tandis

qu’afficher permet de récupérer des valeurs (dans des variables, des constantes ou des valeurs

marquées directement dans le code).

Simplement, pour entrer la nouvelle valeur d’une variable, on mettra

Saisir titi

Dès que la touche Entrée a été frappée, l’exécution reprend, avec la valeur tapée au clavier qui se

retrouve dans la variable titi . En mettant plusieurs variables séparées par des virgules, le

programme attend que l’utilisateur ait entré une valeur pour chaque variable. Par exemple :

Saisir titi, tata, tutu

Le programme va attendre que l’utilisateur saisisse les 3 valeurs.

Pour afficher quelque chose à l’écran, il suffit de mettre

Afficher « Une belle phrase »

Cette instruction aura pour effet d’afficher sur l’écran de l’ordinateur « Une belle phrase ». Il est

possible de combiner des variables, des opérations, et des valeurs :

Afficher « une variable »,A, « et une opération »,(A+4)*B

L’écran affichera alors « une variable » suivit de la valeur qui est dans la variable A, puis « et une

opération » suivit du résultat du calcul.

6

Mise en pratique

• Ecrire l’algorithme demandant à l’utilisateur son nom et qui affiche « Bonjour Mr » suivit du

nom de l’utilisateur

• Ecrire un programme qui lit le prix HT d’un article, le taux de la TVA, et qui fournit le prix total

TTC correspondant. Faire en sorte que l’affichage soit de cette forme : 00 € TTC (avec les 00

remplacés par la valeur saisie par le client). Pour rappel : Prix TTC = (Prix HT * taux TVA)/100

• Ecrire l’algorithme demandant à l’utilisateur de saisir un nombre et d’afficher ce nombre à la

puissance 2 suivant cette syntaxe :

« 00 puissance 2 = 00 » (avec les 00 remplacés par les bonnes valeurs…)

Si vous en voulez encore, faites les exercices de la première page, et envoyez moi vos réponses à

thibault.lelore@gmail.com

N’hésitez pas non plus à utiliser cette adresse pour me faire part de vos remarques sur mon cours,

vos questions… Je suis ouvert au dialogue !

